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Abstract: Alzheimer’s disease (AD) is the main cause of dementia worldwide, and the genetic
mechanism of which is not yet fully understood. Much evidence has accumulated over the past decade
to suggest that after the first large-scale genome-wide association studies (GWAS) were conducted, the
problem of “missing heritability” in AD is still a great challenge. Epistasis has been considered as one
of the main causes of “missing heritability” in AD, which has been largely ignored in human genetics.
The focus of current genome-wide epistasis studies is usually on single nucleotide polymorphisms
(SNPs) that have significant individual effects, and the amount of heritability explained by which
was very low. Moreover, AD is characterized by progressive cognitive decline and neuronal damage,
and some studies have suggested that hyperphosphorylated tau (P-tau) mediates neuronal death
by inducing necroptosis and inflammation in AD. Therefore, this study focused on identifying
epistasis between two-marker interactions at marginal main effects across the whole genome using
cerebrospinal fluid (CSF) P-tau as quantitative trait (QT). We sought to detect interactions between
SNPs in a multi-GPU based linear regression method by using age, gender, and clinical diagnostic
status (cds) as covariates. We then used the STRING online tool to perform the PPI network and
identify two-marker epistasis at the level of gene–gene interaction. A total of 758 SNP pairs were
found to be statistically significant. Particularly, between the marginal main effect SNP pairs, highly
significant SNP–SNP interactions were identified, which explained a relatively high variance at the
P-tau level. In addition, 331 AD-related genes were identified, 10 gene–gene interaction pairs were
replicated in the PPI network. The identified gene-gene interactions and genes showed associations
with AD in terms of neuroinflammation and neurodegeneration, neuronal cells activation and brain
development, thereby leading to cognitive decline in AD, which is indirectly associated with the
P-tau pathological feature of AD and in turn supports the results of this study. Thus, the results of
our study might be beneficial for explaining part of the “missing heritability” of AD.

Keywords: Alzheimer’s disease; epistasis; hyperphosphorylated tau (P-tau); PPI; ADNI

1. Introduction

Alzheimer’s disease (AD) is an insidious neurodegenerative disorder. The currently
available therapies do not slow disease progression, provides short-term symptomatic relief
only [1,2]. Genome-wide association studies (GWAS) and related techniques are gradually
discovering variants of causal gene variants that contribute to complex human diseases.
However, after years of GWAS efforts by countless researchers, these findings can explain
only a small fraction of the heritability and the genetic factors of many human diseases
and traits failed to be discovered, the so-called “missing heritability” [3,4]. Many re-
search suggest that “missing heritability” in AD remains extensive with an estimated
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25% of phenotypic variance unexplained by known variants, which may be explained by
epistasis [5–7]. A single nucleotide polymorphism (SNP) is defined as single nucleotide
alteration in a DNA sequence among individuals [8,9]. As a major drawback, in common
GWAS, the focus is usually on SNPs that have significant individual effects [10,11]. Epis-
tasis is the phenomenon about the interaction alleles of different loci when expressing
a certain phenotype, and it cannot be attributed to the additive combination of effects
corresponding to the individual loci. If the effect of one variant affecting a complex trait
depends on the genotype of a second variant affecting that trait, epistasis will occurs [12].
To be specfic, epistasis leads to complex phenotypic effects, in which the effect of one locus
is masked by the effects on another locus or the joint effects of two SNPs may be significant
whereas they are ineffective separately [13,14]. Therefore, epistasis detection is expected
to explain the “missing heritability” of many complex diseases such as AD, diabetes, and
hypertension [15–17].

As the number of interactions grows exponentially with the number of variants, com-
putational limitation is a bottleneck [18]. Most methods of epistasis detection choose to
refrain from the brute force search in the SNP–SNP interaction space and try to reduce com-
putational burden using dimensionality reduction screening and priori knowledge [19,20].
However, using more subjective priori knowledge or random factors for dimension reduc-
tion search will lead to signal loss because the risk of epistatic interaction is unknown [21].
Moreover, most methods of epistasis detection have been designed for case-control tasks
over the past decade, with few on quantitative traits (QT) [19]. Compared to case–control
status, QT has increased statistical significance and could better track AD progression [22].
Therefore, mining more potential loci by QT, which are implicated in AD without dropping
signals across the whole genome, is urgently needed.

Emerging data have suggested that the prevailing amyloid cascade hypothesis is
insufficient to explain many aspects of AD pathogenesis, neuroinflammation also plays
an important role in the pathogenesis of AD [2,23]. AD is characterized by extracellular
amyloid-β (Aβ) peptides in cortical Aβ plaques, intracellular phosphorylated tau protein as
neurofibrillary tangles, and neuronal as well as axonal degeneration. These key hallmarks
of AD can be measured in vivo with positron emission tomography (PET) imaging and
biofluid markers including plasma and CSF assays [24]. CSF tau, P-tau, and Aβ42 are
established biomarkers for AD and have been widely used as QT for genetic analyse [25].
Furthermore, accumulated P-tau may be the primary contributor to neurodegeneration
during AD, and neuroinflammation is a central mechanism involved in neurodegeneration
as observed in AD and might play a critical role in inducing neurodegeneration [26–28].
Moreover, P-tau, one of the three candidate CSF QT, has been widely studied in the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. For example, heterogeneity
in p-tau species carries predictive power in the identification of disease severity in incipient
AD [29]. P-tau might start neurodegenerative processes and are necessary for cognitive
decline [30]. Tau pathology is an initiating factor in sporadic AD [31]. Increase of p181tau
levels might predict preclinical AD in cognitively normal elderly [32].

Therefore, CSF P-tau was used as a QT to advance statistical power and biological
interpretation in this study. Then, we performed genome-wide epistasis detection in ADNI
cohort based on a multi-GPU method, which has a better detection power outperform other
competitive approaches.

2. Materials and Methods
2.1. Genotyping Data and Subjects Processing

Data used in this study were obtained from the ADNI database. The ADNI is a
longitudinal multi-center study designed to be used for the early detection and tracking
of AD, which was founded in 2004 under the leadership of Dr. Michael W. Weine and
supported by the Foundation for the National Institutes of Health ($27 million) and the
National Institute on Aging ($40 million). The primary goal of ADNI was developing
biomarkers as outcome measures for clinical trials, examining biomarkers in earlier stages



Genes 2023, 14, 1322 3 of 12

of the disease, and developing biomarkers as predictors of cognitive decline, etc. The SNP
data were collected from the Illumina 2.5M array and the Illumina OmniQuad array
including ADNI-1, ADNI-GO, and ADNI-2 cohorts, which can be downloaded from the
LONI website (https://adni.loni.usc.edu, accessed on 19 June 2023). A total of 687,414 SNPs
were involved in the study. To get pure SNP data, genetic analysis tool PLINK v1.90 was
used to filter the SNPs according to the following quality control (QC) criteria: (1) SNPs on
chromosome 1–22; (2) minimum call rate for SNPs and subjects ≥ 95%; (3) minimum allele
frequencies (MAF) ≥ 5%; (4) Hardy-Weinberg equilibrium (HWE) test p ≥ 10−6. After the
QC, a total of 563,980 SNPs participated in this study.

Subjects were checked by the following QC flow: (1) call rate per subjects ≥ 90%;
(2) gender check; (3) identity check. Then, EIGENSTRAT was used to perform the popula-
tion stratification analysis [33]. The population stratification analysis yielded 89 subjects
who were non-Hispanic Caucasians. These 89 participants were excluded from the analysis.
Finally, 1079 subjects passed the QC.

CSF P-tau phenotype was used as QT in this study. The QC criteria of phenotype was
based on two principles: baseline consistency principle and normal distribution principle.
Out of the 1079 subjects retained after the QC, 860 subjects had both genotype data and
phenotype (CSF P-tau). These subjects (N = 860) including 201 cognitive normal cognition
(CN), 84 significant memory impairment (SMC), 251 early mild cognitive impairment
(EMCI), 209 late mild cognitive impairment (LMCI), and 115 AD subjects.

Overall, 860 valid P-tau of CSF subjects and 563,980 remained for the subsequent
genome-wide SNP-SNP interaction analysis.

2.2. Genome-Wide SNP-SNP Interaction Analysis

In this study, including as covariates in the liner regression analysis such as age, gender
and clinical diagnostic status (cds), we consider the linear regression model of additive
main effect of two SNPs,

L1,2 = α0 + α1 × SNP1 + α2 × SNP2 + age + gender + cds + εi (1)

where α0, α1 and α2 are regression coefficients; εi is a residual that follows a normal distri-
bution with mean zero and variance σ2. Therefore, the sum of both additive main effect
and SNP1-SNP2 interaction is then given by

L1,2
S = α0 + α1 × SNP1 + α2 × SNP2 + α1,2 × SNP1 × SNP2 + age + gender + cds + εi (2)

where α0, α1, α2 and α1,2 are regression coefficients. We set Y = Y1 Y2 . . . Yn, where n is
the number of subjects in the sample, then the signal of SNPs is set in the form of Si = S1j
S2j . . . Snj , where j = 1 or 2; Sij is the genotype of the allele on the SNPj of the ith subject;
Sij = 0, 1 or 2. For each SNP-SNP interaction pair, the interaction effect was evaluated by two
linear regression models according to the CSF P-tau quantitative trait. In practice, we test the
significance of the interaction terms using an F test, then the p-value would be calculated.

2.3. Bioinformatics Analyses

To further explain the biological functions of SNP-SNP interaction pairs with signifi-
cant interactions, all SNPs were mapped to the corresponding genes according to position
based on the Homo sapiens genome assembly GRCh37 (hg19), and SNPs not located within
the gene region were mapped to nearby genes by position offset of 100 kb. Moreover,
the gene databases National Center for Biotechnology Information Phenotype-Genotype
Integrator (NCBI PheGenI) was used to analyze the association of the candidate genes with
phenotype trait, and Reactome 2022 was used to conduct pathway analysis for discover
associated biological processes. For the gene-gene interaction pairs after mapping from the
SNP level, functional enrichment processes were performed by PPI network enrichment
analysis through the STRING database.

https://adni.loni.usc.edu
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3. Results
3.1. SNP-SNP Interaction Results

In this study, a genome-wide SNP-SNP interaction detection using CSF P-tau as the
intermediate quantitative phenotype was implemented. With the assistance of the GEEpiQt
tool [34], we completely detected all SNP-SNP interaction pairs with significant interaction
across the whole genome. According to the set p-value criteria, 758 SNP interaction pairs
passed the significance requirement. After the GWAS analysis was conducted on the
SNPs of 758 interaction pairs, all the results indicated that the statistical significance of the
interaction effect was much higher than the main effect. The interaction effects and main
effects of 758 significant SNP-SNP interaction pairs are shown in Figure 1.
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Figure 1. (a) The 3D waterfall plot reveals interaction effects and main effects of each SNP with −log10

(p-values). The number of significant SNP-SNP pairs was 758. For each interaction pair, the blue
waterfall represents main effects of SNP1; the green waterfall represents main effects of SNP2; and the
orange waterfall represents the interaction effects of SNP1–SNP2 pairs. (b) The violin plot shows the
distribution state and probability density of SNP-SNP interaction effect, main effect of SNP1 and SNP2.

To further confirm the association of SNP interactions with quantitative phenotypes,
the explained variance of genetic epistasis of CSF P-tau was calculated by IBM SPSS 24.0.
Two general linear models were used, with age, sex and disease diagnosis status added
as covariates, and interaction terms were added to one model for calculating the main
effect and interaction effect on phenotypic explanatory rate separately. The R square of
the interaction terms and the additive terms are shown in Figure 2. The top 10 R-square
of SNP-SNP interaction pairs and results of post hoc analysis on P-tau level are seen in
Table 1. Age, gender, and cds accounted for 9.3% of variance on the P-tau level. Moreover,
Table 1 gives the proportion of additional variance in P-tau level explained by the combined
main effect and interaction effect of SNP1 and SNP2 after accounting for age, gender, cds,
SNP1 and SNP2. The percentages of each interaction pair are as follows. For rs2291948
(APOOP5)—rs2619171, the interaction term accounted for 5.6% of variance, and the main
effects accounted for 0.1% of variance (5.7% combined). For rs17069204 (SEC63)—rs4983187
(LINC02588), the interaction term accounted for 5.5% of variance, and the main effects
accounted for 0.8% of variance (6.3% combined). For rs6882813—rs17416058, the interac-
tion term accounted for 5.5% of variance, and the main effects accounted for 0.7% of
variance (6.2% combined). For rs129600 (PPARA)—rs6602151 (RSU1), the interaction
term accounted for 5.4% of variance, and the main effects accounted for 0.5% of vari-
ance (5.9% combined). For rs6796502 (PRSS42P)—rs6999890 (SLC45A4), the interaction
term accounted for 5.3% of variance, and the main effects accounted for 0.4% of vari-
ance (5.7% combined). For rs1412839 (PDPN)—rs2397718, the interaction term accounted
for 5.3% of variance, and the main effects accounted for 0.5% of variance (5.8% com-
bined). For rs2219872 (GRIP1)—rs2647911 (C12orf66), the interaction term accounted
for 5.2% of variance, and the main effects accounted for 1.3% of variance (6.5% com-
bined). For rs9320250 (OSTM1)—rs4983187 (LINC02588), the interaction term accounted
for 5.2% of variance, and the main effects accounted for 1.1% of variance (6.3% com-



Genes 2023, 14, 1322 5 of 12

bined). For rs10802434 (SCCPDH)—rs12470444 (NRP2), the interaction term accounted
for 5.2% of variance, and the main effects accounted for 0.6% of variance (5.8% combined).
For rs2487643 (PDPN)—rs2397718, the interaction term accounted for 5.2% of variance, and
the main effects accounted for 0.6% of variance (5.8% combined).
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Figure 2. (a) The 3D waterfall plot reveals interaction and additive terms with R square in the linear
regression model. The orange area represents the variance explained by interaction term on P-tau.
The green area represents the variance explained by additive term on P-tau. (b) The violin plot shows the
distribution state and probability density of interaction R square, additive terms of R square the two SNPs.

Table 1. Top10 R Square Of Snp-Snp Interaction Pairs.

NO SNP 1× SNP 2 GENE CHR
p-Value Explained Variance (R Square)

GWAS Interaction Age + Gender + cdsr 1 SNP 1 + SNP 2
2 SNP 1 × SNP 3

2

1 rs2291948 APOOP5 16 0.963536
1.70×10−9 0.093 0.001 0.056rs2619171 - 15 0.911948

2 rs17069204 SEC63 6 0.0222884
6.73×10−11 0.093 0.008 0.055rs4983187 LINC02588 14 0.592583

3 rs6882813 - 5 0.420613
2.86×10−10 0.093 0.007 0.055rs17416058 - 11 0.212032

4 rs129600 PPARA 22 0.635138
4.92×10−10 0.093 0.005 0.054rs6602151 RSU1 10 0.870792

5 rs6796502 PRSS42P 3 0.676528
4.80×10−11 0.093 0.004 0.053rs6999890 SLC45A4 8 0.454329

6 rs1412839 PDPN 1 0.251693
6.00×10−10 0.093 0.005 0.053rs2397718 - 5 0.785923

7 rs2219872 GRIP1 12 0.016483
3.52×10−12 0.093 0.013 0.052rs2647911 C12orf66 12 0.292968

8 rs9320250 OSTM1 6 0.0269661
4.37×10−10 0.093 0.011 0.052rs4983187 LINC02588 14 0.592583

9 rs10802434 SCCPDH 1 0.873933
8.49×10−10 0.093 0.006 0.052rs12470444 NRP2 2 0.291239

10 rs2487643 PDPN 1 0.231468
1.31×10−9 0.093 0.006 0.052rs2397718 - 5 0.785923

1 Age + gender + cds: percent of variance in P-tau level explained by age, gender and cds. 2 SNP1 + SNP2: percent
of additional variance in P-tau level explained by the combined main effect of SNP1 and SNP2 after accounting
for age, gender and diagnosis. 3 SNP1 × SNP2: percent of additional variance in P-tau level explained by the
interaction effect of SNP1 and SNP2 after accounting for age, gender, diagnosis, SNP1 and SNP2. The genes with
bold italics in the table are AD-related genes.

3.2. Functional Annotations for Significant Interaction Pairs

A total of 1161 SNPs were mapped onto 578 genes. Then, gene set enrichment analysis
was performed based on HDSigDB Human 2021 in Enrichr. The results of enrichment
analysis indicate that 331 genes have been shown associated with AD, and the number
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of unconfirmed AD-related genes is 247. In order to make more sensible explanations at
the gene level in subsequent study, these gene pairs were categorized according to the
relationship of genes with AD on both sides. The interactions were classified into three
categories: both genes in each pair are AD-related, only one gene in each pair is AD-related,
and none gene in each pair is associated with AD, as shown in Figure 3.
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Figure 3. Three categories of different relationships with AD correlation in a gene-gene interaction
pair. (a) The 1st relationship, include 95 gene pairs, both genes in each pair are AD-related. (b) The 2nd
relationship, includes 79 gene pairs, only one gene in each pair is AD-related. (c) The 3rd relationship,
includes 25 gene pairs, none gene in each pair is associated with AD. The red spots represent AD-
related genes. The blue spots represent AD-unrelated genes. Multiple lines between two points
represent multiple pairs of SNP mapped ont to the same pair of genes.

Moreover, the gene databases National Center for Biotechnology Information Phenotype-
Genotype Integrator (NCBI PhenGenI) and Reactome 2022 were used to analyze the associ-
ation of the detected genes with CSF P-tau quantitative traits. Pathway enrichment analysis
of genes mapped by the identified SNPs based on their enrichment adjusted p-values is
presented in Figure 4. The Reactome enrichment analysis showed that three of the top ten
pathways were significant, Cell-Cell Communication, Cell Junction Organization and Neu-



Genes 2023, 14, 1322 7 of 12

ronal System pathways. Among them, there is evidence that “Cell-Cell Communication” is
associated with the abnormal accumulation of phosphorylated tau protein in Alzheimer’s
disease. In the Neuronal System pathway, tau protein is normally involved in stabilizing
microtubules in neurons, but in Alzheimer’s disease, it can become hyperphosphorylated
and form aggregates called neurofibrillary tangles. These tangles can disrupt the transport
of nutrients and other substances within neurons, which can further damage the pathways
of the neuronal system. The results of the PhenGenI Association enrichment analysis were
found significant in several diseases, such as Platelet Function Tests, Alzheimer Disease,
and Stroke.
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Figure 4. Significantly enriched pathways of studied genes. x-axis indicates the number of overlapped
genes of related pathway, y-axis indicates significant pathways. The gradient of the color represents
the level of significance. The red bars represent high significance. (a) Top 20 pathways identified by
PhenGenI Association 2021 enrichment, −log10 adjusted p-value. (b) Top 10 pathways identified by
Reactome 2022, adjusted p-value.

3.3. Potential Interactions via Protein-Protein Interaction Analysis

To investigate and validate the potential interactions additionally, we submitted
174 gene-gene interaction pairs to the STRING database for PPI enrichment analysis. All
the 174 gene-gene interaction pairs were selected from the 1st relationship shows in
Figure 3a and the 2nd relationship as shows in Figure 3b. Notably, 10 of the gene interaction
pairs overlapped with PPI networks in the database, as shown in Figure 5, including: SPSB1-
EPHB1, HNRNPU-NEDD4L, MYT1L-NYAP2, GGCX-F13A1, LRP1B-PDE4D, RARB-NR3C1,
CCL2-SEMA6D, ROBO1-TLE1, CSNK1A1-PTK7, MYO5B-PCDH15.
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Figure 5. The PPI subnetwork of studied genes. The nodes and edges represent the proteins (genes)
and their interactions, respectively. The PPI subnetwork contained 20 nodes and 33 edges. The light
pink connections represent ten overlapped gene-gene interaction pairs with the PPI network.

4. Discussion

In this study, detection of genome-wide SNP-SNP interaction based on multi-GPU
were performed. To our knowledge, this study is a highly comprehensive epistatic study of
QT at the P-tau level. A total of 758 SNP-SNP pairs were found to be statistically significant,
and highly significant SNP–SNP interactions were detected between the marginal main
effect SNPs. In particular, the interaction effects were much higher than the main effects
(Figure 1). As we expected, all identified interaction pairs explained a relatively high-level
variance at the P-tau level (Figure 2 and Table 1), which could be helpful for explaining
some part of the “missing heritability” of AD.

To identify potential genetic epistasis implicated in AD and obtain biologically mean-
ingful explanations at gene-gene interaction level, 174 gene-gene interaction pairs, which
from 1st relationship (Figure 3a) and 2nd relationship (Figure 3b) were submitted to the
STRING database to perform the PPI enrichment analysis. As shown in Figure 5, the PPI
sub-network containing 20 genes and 33 gene-gene interactions were identified. As a result,
ten gene-gene interaction pairs overlapped with the PPI network need further discussion.

CSNK1A1 is a casein kinase which is involved in the phosphorylation state of tau [35].
Protein tyrosine kinase 7(PTK7) is a regulator of Wnt signaling pathways [36]. Wnt signaling is
deregulated in AD, which could contribute to synapse degeneration and cognitive decline. This
deficiency in Wnt signaling may further exacerbate tau hyperphosphorylation [37]. Therefore,
the CSNK1A1 and PTK7 interaction shows strong associations with tau phosphorylation.

The SPRY domain-containing SOCS box protein 1 (SPSB1) is involved in the develop-
ment of AD through nitric oxide (NO) pathways. To be specific, NO pathways contribute
to pathogenesis of neurodegeneration in AD and other neurodegenerative dementias by
involving in neuroinflammation, while SPSB1 negatively control NO production and limit
cellular toxicity [38]. Ephrin type-B receptor 1 (EphB1) is upregulated in injured motor
neurons, and then activated astrocytes [39]. Furthermore, activated astrocytes mediate neu-
roinflammation and neurodegeneration. Neuroinflammation induces neurodegeneration
and the processes involved in neurodegeneration augments neuroinflammation [26].

Neurodegeneration is mediated by inflammatory and neurotoxic mediators such
as chemokine (C-C motif) ligand 2 (CCL2), CCL5, tumor necrosis factor-alpha (TNF-α)
and interleukin-6(IL-6) etc. The increased level of these mediators including CCL2 lead to
neurodegeneration and neuronal death in neurodegenerative diseases [26,40]. These inflam-
matory and neurotoxic mediators directly or indirectly through glial cells and inflammatory
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cells affect neuronal survival and induce neurodegeneration [26]. Moreover, CCL2 is impli-
cated in the pathways recruiting microglia and the development of P-tau pathology, and
might be related to reducing neuroinflammation [41]. SEMA6D is a regulator of microglial
phagocytosis and inflammatory cytokine (TNFα, IL-6 etc.) release in a TREM2-dependent
manner [42,43]. Moreover, microglial phagocytosis is a disease-associated process emerging
from AD genetics [44]. Excessive microglial phagocytosis of synapses can be observed
in AD, leading to significant synapse loss and memory impairment [45]. And lack of mi-
croglial phagocytosis can exacerbate pathology of AD and induce memory impairment [46].
Microglia are also major players in neuroinflammation [23].

RP1B belonged to the low-density lipoprotein (LDL) receptor family, and several
members of the LDL family have been implicated in cellular processes relevant to neu-
rodegeneration, including tau uptake et al. Enhanced LRP1B activity can protect against
the pathogenesis of AD and cognitive decline in old age. Inhibition of phosphodiesterase
4D (PDE4D) activity can enhance phosphorylation of tau.

MYT1L is a critical mediator of directly converting human brain vascular pericytes
(HBVPs) into cholinergic neuronal cells, and the cholinergic deficit is thought to underlie
progressed cognitive decline in AD. Neuronal tyrosine-phosphorylated phosphoinositide-
3-kinase adapter 2 (NYAP2) is involved in remodeling of actin cytoskeleton [47]. Actin cy-
toskeleton has been described as an underlying factor of synaptic failure in AD, which
could contribute to AD pathology [48].

Regulation of HNRNPU expression ameliorates impairments of learning and memory
abilities in an AD rat model. NEDD4L is identified as potential nuclear enriched abundant
transcript 1 (NEAT1) interaction proteins. upregulated NEAT1 can give rise to the amyloid
accumulation and cognitive decline in AD.

In summary, CSNK1A1-PTK7 interaction and PDE4D gene shows strong associations
with P-tau, which is directly associated with pathogenesis of AD. Two pairs of gene-gene
interactions show strong associations with AD in terms of neuroinflammation and neurode-
generation: SPSB1-EPHB1, CCL2-SEMA6D. MYT1L gene, LRP1B gene and NEDD4L gene
show strong associations with AD, and leading to cognitive decline in AD. LRP1B gene
is also associated with pathogenesis of AD. HNRNPU gene exerts its effects on learning
and memory abilities in AD. NYAP2 gene is involved in remodeling of actin cytoskeleton,
which is indirectly associated with AD pathology. Two pairs of gene-gene interactions
can affect the activation of neuronal cells and contribute to brain development: RARB-
NR3C1, ROBO1-TLE1 [49,50]. MYO5B gene and GGCX gene show strong associations with
schizophrenia [51]. Neuroinflammation is well established in a subset of schizophrenia
patients [52]. In addition, two genes have not yet been associated with AD pathology:
F13A1, PCDH15, which warrant further investigation.

To our knowledge, neurodegeneration appears to be the biological mechanism most
proximate to cognitive decline in AD [53]. Aβ and tau pathologies interact synergistically in
the preclinical stages of AD, which contributing to faster neurodegeneration and cognitive
decline [54,55]. Therefore, the identified gene-gene interactions and genes in the PPI
network might be related to neuroinflammation and neurodegeneration, thereby leading
to cognitive decline in AD, which is indirectly proves that accumulated P-tau may be the
primary contributor to neurodegeneration during AD [27], and in turn supports the results
of this study.

5. Conclusions

Aimed at performing genome-wide epistasis detection in the ADNI cohort, we used
CSF P-tau as a QT. 331 AD-related gene were replicated, which are previously confirmed
AD risk genes. We also replicated 10 findings in the PPI network, which are SPSB1-EPHB1,
HNRNPU-NEDD4L, MYT1L-NYAP2, GGCX-F13A1, LRP1B-PDE4D, RARB-NR3C1, CCL2-
SEMA6D, ROBO1-TLE1, CSNK1A1- PTK7, MYO5B-PCDH15. Moreover, 3 gene-gene pairs
of interaction showed strong association with AD: CSNK1A1-PTK7, SPSB1-EPHB1, CCL2-
SEMA6D. Interactions between RARB and NR3C1, between ROBO1 and TLE1 can affect



Genes 2023, 14, 1322 10 of 12

the activation of neuronal cells and contribute to brain development. Our study also
revealed two genes have not yet been associated with AD pathology: F13A1, PCDH15,
which warrant further investigation. In summary, our results can provide useful clues
to the aspect of inducing neuroinflammation and neurodegeneration, and show strong
association with AD in terms of cognitive decline. Therefore, this study might open new
avenues to complement common GWAS. Furthermore, our results may be replicated by
considering other quantitative traits using different databases and methods to complement
the PPI network. Biological interpretation is also a direction of future research.
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